Leakage Detection by Adaptive Process Modeling
نویسندگان
چکیده
In this paper, we propose an adaptive linear approach for time series modeling and steam line leakage detection. Weighted recursive least squares (WRLS) method is used for modeling. Interpretive variables of an adaptive model should be linearly correlated to ensure a robust model. In this paper it is ensured by examining eigenvalues and eigenvectors of the principal component analysis (PCA). The method is applied to a time series from the boiling water reactor (BWR) type nuclear power plant. Model is updated and used each time step to detect leakage in steam lines. Developed leakage detection index is based on the model estimation error. Method is more convincing in small pipe flows, because there are other ways to detect bigger volume leakages.
منابع مشابه
Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملTarget Detection in Bistatic Passive Radars by Using Adaptive Processing Based on Correntropy Cost Function
In this paper a novel method is introduced for target detection in bistatic passive radars which uses the concept of correntropy to distinguish correct targets from false detections. In proposed method the history of each cell of ambiguity function is modeled as a stochastic process. Then the stochastic processes consist the noise are differentiated from those consisting targets by constructing...
متن کاملModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008